Custom Concrete The Right Stuff
07771 545410
01525 861899
truck Custom Concrete truck

Freshly mixed concrete delivered just where you want it

filling a trench

The right amount, not an ounce more

filling a wheelbarrow

Any type, any quantity

All about concrete

Description

Concrete is a composite material composed of aggregate bonded together with a fluid cement which hardens over time. When the aggregate is mixed together with the dry cement and water, they form a fluid mass that is easily molded into shape. The cement reacts chemically with the water and other ingredients to form a hard matrix which binds all the materials together into a durable stone-like material that has many uses. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix or the finished material. Often, concrete is poured with reinforcing materials embedded to provide tensile strength, yielding reinforced concrete.

There are many types of concrete available, created by varying the proportions of the main ingredients below. In this way or by substitution for the cementitious and aggregate phases, the finished product can be tailored to its application with varying strength, density, or chemical and thermal resistance properties.

Constiuents

Aggregate consists of large chunks of material in a concrete mix, generally a coarse gravel or crushed rocks such as limestone, or granite, along with finer materials such as sand.

Cement, most commonly Portland cement, is associated with the general term "concrete." A range of materials can be used as the cement in concrete. One of the most familiar of these alternative cements is asphalt. Other cementitious materials such as fly ash and slag cement, are sometimes added as mineral admixtures - either pre-blended with the cement or directly as a concrete component - and become a part of the binder for the aggregate.

Water is then mixed with this dry powder/aggregate blend, which produces a semi-liquid that workers can shape (typically by pouring it into a form). The concrete solidifies and hardens through a chemical process called hydration. The water reacts with the cement, which bonds the other components together, creating a robust stone-like material.

Chemical admixtures are added to achieve varied properties. These ingredients may accelerate or slow down the rate at which the concrete hardens, and impart many other useful properties including increased tensile strength, entrainment of air, and/or water resistance.

Reinforcement is often included in concrete. Concrete can be formulated with high compressive strength, but always has lower tensile strength. For this reason it is usually reinforced with materials that are strong in tension (often steel).

Mineral admixtures are becoming more popular in recent decades. The use of recycled materials as concrete ingredients has been gaining popularity because of increasingly stringent environmental legislation, and the discovery that such materials often have complementary and valuable properties. The most conspicuous of these are fly ash, a by-product of coal-fired power plants, ground granulated blast furnace slag, and silica fume, a byproduct of industrial electric arc furnaces. The use of these materials in concrete reduces the amount of resources required, as the mineral admixtures act as a partial cement replacement. This displaces some cement production, an energetically expensive and environmentally problematic process, while reducing the amount of industrial waste that must be disposed of.

Cement

Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar and plaster. English masonry worker Joseph Aspdin patented Portland cement in 1824. It was named because of the similarity of its color to Portland limestone, quarried from the Isle of Portland and used extensively in London architecture. It consists of a mixture of oxides of calcium, silicon and aluminium. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay and grinding this product (called clinker) with a source of sulfate (most commonly gypsum).

In modern cement kilns many advanced features are used to lower the fuel consumption per ton of clinker produced. Cement kilns are extremely large, complex, and inherently dusty industrial installations, and have emissions which must be controlled. Of the various ingredients used in concrete the cement is the most energetically expensive. Even complex and efficient kilns require 3.3 to 3.6 gigajoules of energy to produce a ton of clinker and then grind it into cement. Many kilns can be fueled with difficult-to-dispose-of wastes, the most common being used tires. The extremely high temperatures and long periods of time at those temperatures allows cement kilns to efficiently and completely burn even difficult-to-use fuels.

Additives

Accelerators speed up the hydration (hardening) of the concrete. Typical materials used are CaCl2, Ca(NO3)2 and NaNO3. However, use of chlorides may cause corrosion in steel reinforcing and is prohibited in some countries, so that nitrates may be favored. Accelerating admixtures are especially useful for modifying the properties of concrete in cold weather.

Retarders slow the hydration of concrete and are used in large or difficult pours where partial setting before the pour is complete is undesirable. Typical polyol retarders are sugar, sucrose, sodium gluconate, glucose, citric acid, and tartaric acid.

Air entraining agents add and entrain tiny air bubbles in the concrete, which reduces damage during freeze-thaw cycles, increasing durability. However, entrained air entails a trade off with strength, as each 1% of air may decrease compressive strength 5%. If too much air becomes trapped in the concrete as a result of the mixing process, Defoamers can be used to encourage the air bubble to agglomerate, rise to the surface of the wet concrete and then disperse.

Plasticizers increase the workability of plastic or "fresh" concrete, allowing it be placed more easily, with less consolidating effort. A typical plasticizer is lignosulfonate. Plasticizers can be used to reduce the water content of a concrete, while maintaining workability and are sometimes called water-reducers due to this use. Such treatment improves its strength and durability characteristics. Superplasticizers (also called high-range water-reducers) are a class of plasticizers that have fewer deleterious effects and can be used to increase workability more than is practical with traditional plasticizers. Compounds used as superplasticizers include sulfonated naphthalene formaldehyde condensate, sulfonated melamine formaldehyde condensate, acetone formaldehyde condensate and polycarboxylate ethers.

Pigments can be used to change the color of concrete, for aesthetics.

Corrosion inhibitors are used to minimize the corrosion of steel and steel bars in concrete.

Bonding agents are used to create a bond between old and new concrete (typically a type of polymer) with wide temperature tolerance and corrosion resistance.

Pumping aids improve pumpability, thicken the paste and reduce separation and bleeding.

Curing

In all but the least critical applications, care must be taken to properly cure concrete, to achieve best strength and hardness. This happens after the concrete has been placed. Cement requires a moist, controlled environment to gain strength and harden fully. The cement paste hardens over time, initially setting and becoming rigid though very weak and gaining in strength in the weeks following. In around 4 weeks, typically over 90% of the final strength is reached, though strengthening may continue for decades. The conversion of calcium hydroxide in the concrete into calcium carbonate from absorption of CO2 over several decades further strengthens the concrete and makes it more resistant to damage. However, this reaction, called carbonation, lowers the pH of the cement pore solution and can cause the reinforcement bars to corrode.

Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained sufficient strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three years. It depends on cross-section dimension of elements and conditions of structure exploitation.

During this period concrete must be kept under controlled temperature and humid atmosphere. In practice, this is achieved by spraying or ponding the concrete surface with water, thereby protecting the concrete mass from ill effects of ambient conditions. Additional common curing methods include wet burlap and/or plastic sheeting covering the fresh concrete, or by spraying on a water-impermeable temporary curing membrane.

Properly curing concrete leads to increased strength and lower permeability and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing or overheating due to the exothermic setting of cement. Improper curing can cause scaling, reduced strength, poor abrasion resistance and cracking.

Wikipedia

No Waste   No Mess   No Worries